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Abstract. The temperature dependent surface impedance Zs(T ) of single-crystalline YBa2Cu3O7−x
(YBCO) was analyzed within the two-fluid model in terms of the fraction of paired charge carriers,
fs(T ), and of the quasiparticle scattering time τ (T ). The usual approach was extended by considering
a temperature dependent effective quasiparticle mass m∗(T ), which results from a strong electron-phonon
interaction. This effect must not be neglected in the description of high-temperature superconductors due
to the large ratio of Tc to the Debye temperature TD. The temperature dependence of the penetration
depth, λ(T ), of high-quality YBCO crystals and films could be described with an electron-phonon cou-
pling constant Λ0 = 4, and using fs(T ) = 1− (T/Tc)

2.8 as an approximation of the BCS theory. Different
trial phonon spectra were encountered in terms of their ability to reproduce the λ(T )-data. The scattering
time τ (T ) was described by the Bloch-Grüneisen formalism with TD = 460 K. Assuming an Einstein spec-
trum with kBTc/~Ωln = 0.24, a residual resistivity ρr = 1.8 µΩcm and a fraction of unpaired quasiparticles
ε = 0.04 at T = 0 K yielded a surprisingly good agreement of the model with Zs(T )-data measured at
87 GHz with a high-quality epitaxial YBCO film between T = 4 K and Tc. While an exact reproduction of
the surface impedance asks for a rigorous theoretical computation, our analysis demonstrates that strong
electron-phonon coupling is relevant for discussing the unconventional transport properties of YBCO.

PACS. 74.25.Nf Response to electromagnetic fields (nuclear magnetic resonance, surface impedance, etc.)
– 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau, etc.) – 74.76.Bz High-Tc films

1 Introduction

Since the advent of the copper oxide superconductors
with high transition temperatures Tc > 30 K, many ex-
periments revealed unconventional electronic properties.
Among these there are measurements of the complex sur-
face impedance Zs = Rs + iXs, with Rs the surface re-
sistance, Xs = µ0ωλ the surface reactance, and λ the
penetration depth (µ0 is the magnetic permeability of
vacuum, and ω = 2πf is the circular frequency). Of
special concern for a consistent theoretical understand-
ing of the superconducting state is the temperature de-
pendence of Zs [1–4]. Zs(T )-data obtained with high-
quality YBa2Cu3O7−x (YBCO) films and single-crystals
displayed unconventional behaviour in the following re-
spects: 1) Despite steady improvements of sample qual-
ity, the residual resistance Rres = Rs(T = 0) remained
higher by several orders of magnitude than typical values
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for conventional superconductors like Nb or Nb3Sn. 2) The
surface resistance Rs as well as the change of the penetra-
tion depth [λ(t)/λ(0) − 1] often displayed power-law be-
haviour at low reduced temperatures t = T/Tc � 1. This
is qualitatively different from the exponential temperature
dependence expected for superconductors with a gapped
density of states, e.g., in the framework of Eliashberg the-
ory at weak electron-phonon coupling [5,6]. 3) At inter-
mediate temperatures, Rs(t) has been observed to pass
through a shallow maximum. The temperature at which
this maximum occurred as well as its shape were found to
depend on frequency, in accordance with the Drude model
of metals [7]. 4) Approaching the transition temperature
(t ≤ 1), penetration depth data were reported to be con-
sistent with a “3dim-XY” model, λn(T ) ∝ (1 − t) with
n = 3 [8]. Such a behaviour does not agree with the pre-
diction of Ginsburg-Landau theory [9] with n = 2 which,
however, has also been reported by some groups [10–12].
These observations were concluded to rule out a descrip-
tion of the surface impedance in the framework of con-
ventional Eliashberg theory. Instead, unconventional cou-
pling mechanisms were speculated with a possible d-wave
symmetry of the order parameter, or two-band supercon-
ductivity with one band being gapless or very weakly
gapped [1–4,13–15].
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The microscopic quantities are usually deduced from
the surface impedance within the two-fluid model. Recent
extensions of this model were successful in reducing the
number of free parameters needed to describe experimen-
tal data, namely by extending the normal-state proper-
ties to the quasiparticle states below Tc [16]. However, the
source of the apparently unconventional temperature de-
pendence of the pair density fs(T ) remained unexplained.
In the present paper we suggest a further extension of the
two-fluid model by fixing fs(T ) to conventional BCS-like
behaviour and by accounting for a temperature depen-
dent effective quasiparticle mass. This feature is relevant
for strongly coupled and hence for high temperature su-
perconductors, as argued in relation to the discussion of
an unconventional isotope effect [17]. Our model allows to
describe various features of measured surface impedance
data, completely based on conventional approaches, with
merely two free parameters. At the same time, the model
provides a natural explanation of the different Zs-data of
single crystals and epitaxial films. The general two-fluid
formalism is outlined in Section 2. Extensions of the two-
fluid model are discussed in Section 3 in terms of the
temperature dependent scattering time τ(T ) and effec-
tive mass m∗(T ). The model is applied to describe the
published λ(T )-data typical for single-crystals [16]. Sur-
face impedance data of a high-quality epitaxial YBCO
film measured at 87 GHz and analyzed previously [13] are
simulated in Section 4.

2 Two-fluid model of the surface impedance

Since the electrodynamics of YBCO fall into the local
(λ � coherence length ξ0) and clean (mean-free path
` � ξ0) limit, the surface impedance can be described
in terms of the two-fluid model [1]. Denoting the fraction
of paired charge carriers by fs and the fraction of quasi-
particles by fn, the complex conductivity σS of a super-
conductor is:

σS(t) = σ1(t)− iσ2(t) =
ne2

m∗(t)

[
fn(t)

1/τ(t) + iω
+
fs(t)
iω

]
,

(1)

with n the quasiparticle density at the Fermi level, e the
electronic unit charge, and m∗ and τ the effective mass
and the scattering time of the quasiparticles respectively.
The temperature dependence has been made explicit in
equation (1). Assuming a complete condensation of quasi-
particles into pairs, fn(0) = 0, and neglecting the temper-
ature dependence of the effective mass, we obtain ωτ and
fn as

ωτ(t) =
σ1(t)

σ2(0)− σ2(t)
, (2a)

fn(t) = 1− fs(t) =
{

1 + [ωτ(t)]2
}[

1− σ2(t)
σ2(0)

]
· (2b)

The real and imaginary parts of σS(t) can be extracted
from the measured temperature dependences of the sur-

face resistance and the surface reactance by

σS(t) =
µ0ω

[X2
s (t) +R2

s (t)]2

×
{

2Rs(t)Xs(t)− i
[
X2

s (t)−R2
s (t)
]}
. (3)

Finally, the penetration depth in the adiabatic limit,
ωτ(t) � 1, is related to the microscopic quantities in-
troduced in equation (1) by

λ2(t) =
m∗(t)

µ0e2nfs(t)
· (4)

The unconventional temperature dependence of λ(t)
mentioned in Section 1 was attributed to a power-law
behaviour fs(t) ∝ tα, α = 1−2, in accordance with an
order parameter that changes sign along lines in momen-
tum space. Furthermore, a steep drop of the scattering
rate τ−1(t) between t = 1 and t = 0.1 by more than
two orders of magnitude was reported [18]. The increase
of τ(t) and the simultaneous decrease of the quasiparti-
cle fraction fn(t) were found to cause a maximum in σ1(t)
which also explained the extremal behaviour of the surface
resistance at intermediate temperatures. As argued, e.g.,
in reference [19], the observed temperature dependences
of τ and fn could not be explained within BCS theory.
Rather, different mechanisms were considered, based on
magnetic pair interactions, strong quasiparticle correla-
tions, and granularity [1,3,13–15].

3 Extensions of the two-fluid model

Assuming the scattering of quasiparticles as a result of
an ordinary electron-phonon interaction, Trunin [3] and
Fink [16] could reproduce surface resistance data by ex-
tending the Bloch-Grüneisen formalism for the normal-
state conductivity to the quasiparticles below Tc. They
replaced the constant low-frequency limit of the quasipar-
ticle conductivity σdc = ne2τ/m∗ by

σdc =
ne2τ(t)fn(t)

m∗(0)
=
fn(t)
ρ(t)

=
1− fs(t)

ρr + ρi(1)t5g(t)
, (5)

where the total resistivity ρ(t) = ρr + ρi(t) is the sum of a
residual [ρr = ρ(0)] and an intrinsic term [ρi(t) = ρ(t)−ρr],
and g(t) is related to the Bloch-Grüneisen integral [16,20].
This approach yielded a reasonable explanation of τ(t) in
YBCO films and single-crystals. However, the tempera-
ture dependence of fs remained an empirical input pa-
rameter, deduced from measured penetration depth data.

Following the same rational, we propose a further
refinement of the two-fluid model within conventional
strong-coupling theory [21]. It is well-known that the
coupling constant Λ of strongly coupled Eliashberg su-
perconductors becomes temperature dependent due to
electron-phonon corrections to the quasiparticle ener-
gies [22–24]. Consequently, the effective quasiparticle mass
m∗ = m0(1 + Λ) becomes temperature dependent, too
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(where m0 is the unrenormalized electron mass). As ar-
gued in the following, this effect significantly alters the
temperature dependence of the penetration depth and of
the surface resistance.

The following treatment is based on simplifying as-
sumptions in order to demonstrate the impact of a tem-
perature dependent effective mass on Zs(T ). However, the
conclusions of the model remained correspondingly valid
if more realistic approaches (including anisotropy, real-
istic phonon spectra, possible two-band behaviour and
non-s wave symmetry of the pair state) were encoun-
tered. We assume for simplicity that an isotropic electron-
phonon interaction is described by the characteristic func-
tion α2(Ω)F (Ω), where Ω is a phonon frequency, F (Ω) is
the phonon density of states, and α2(Ω) is the electron-
phonon coupling. Under these conditions Λ(t) is given by:

Λ(t) = 2

∞∫
0

dΩ
[
α2(Ω)F (Ω)

Ω
G

(
kBT

~Ω

)]
(6)

where kB is the Boltzmann constant, ~ is the reduced
Planck’s constant, and G(x) is the Grimvall function [22]

G(x) =

∞∫
0

dz
coth2(z)

1
1− (2zx)2

· (7)

The resulting temperature dependence of the effective
mass turns out to be:

m∗(t) = m∗(0)
[
1 +

Λ(t)− Λ0

1 + Λ0

]
, (8)

where Λ0 = Λ(t = 0). A precise computation of m∗(t)
requires the knowledge of the real electron-phonon inter-
action [23,24]. However, a useful approximation can be
obtained assuming an Einstein spectrum centered at the
characteristic phonon frequency Ωln [5,14,15]:

α2(Ω)F (Ω) =
Λ0

2
Ω

Ωln
δ(Ω −Ωln), (9a)

Ωln = exp

 2
Λ0

∞∫
0

ln(Ω)
α2(Ω)F (Ω)

Ω
dΩ

 . (9b)

Theoretical approaches to describe YBCO within Eliash-
berg theory revealed Λ0 = 3 ÷ 4 and Ψ ≡ kBTc/~Ωln ≈
0.3−1 as typical parameters. However, taking into account
the breakdown of the Migdal theorem resulted in a much
smaller coupling constant Λ0 ≈ 1.5 [25], which approaches
the range of validity of the scaled BCS theory.

Figure 1 displays the dependence of the reduced effec-
tive massm∗(t)/m∗(0) on the normalized temperature Ψ×
t for different values of Λ0 calculated by equations (6–8).
Due to the simple Einstein spectrum, the temperature
dependence of m∗ is determined by the Grimvall func-
tion G(Ψt), which scales like t2 for (Ψt) � 1 [23]. As Λ0

vanishes, the electron-phonon correction of the quasiparti-
cle energies becomes negligible, and m∗(t) approaches the
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Fig. 1. Reduced effective mass m∗(t)/m∗(0) as a function of
the normalized temperature Ψ × t = kBT/~Ωln assuming an
Einstein spectrum centered at Ωln for Λ0 = 4 (solid curve),
1 (dashed), 0.5 (dotted), 0.1 (dash-dotted).
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Fig. 2. Temperature dependence of the reduced effective mass
m∗(t)/m∗(0) assuming an Einstein spectrum with Λ0 = 4 and
Tc = 90 K for Ψ = 1 (solid curve), 0.6 (dashed), 0.3 (dotted),
0.1 (dash-dotted).

constant m∗(0) in accordance with expectation. Similar
results for m∗(t) can be obtained with a Debye spectrum:

α2(Ω)F (Ω) =
Λ0

2

(
Ω

ΩD

)2

θ(ΩD −Ω) (10)

with ΩD the Debye frequency which corresponds, for
YBCO, to a Debye temperature TD = 460 K [16]. This
spectrum yields an effective mass initially increasing like
(T/TD)2 log(TD/T ) at T/TD � 1. Figure 2 shows m∗(t)
for different values of Ψ , calculated under the assumption
of the Einstein spectrum, Λ0 = 4 and Tc = 90 K. The
maximum of G(x) at x ≈ 0.26 is transferred to an ex-
tremal temperature dependence of m∗ for Ψ ≥ 0.25. It is
thus expected to occur for strong-coupling superconduc-
tors like YBCO and other cuprates.

In order to determine the penetration depth from equa-
tion (4), the temperature dependent pair fraction must
be known in addition to m∗(t). As a first guess, we have
approximated fs(t) dependence as fs(t) = 1 − t2.8, in
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Fig. 3. Temperature dependence [λ(0)/λ(t)]2 for fs(t) = 1 −
t2.8 (bold solid curve) and Λ0 = 4 for an Einstein spectrum
with Ψ = 0.3 (dotted) and Ψ = 0.6 (dashed), and for a Debye
spectrum with TD = 460 K (dash-dotted). The thin solid curve
represents the BCS prediction evaluated as reported in the
text. The inset magnifies the region 0.9 < t < 1 (the BCS
curve and the Debye spectrum were omitted for clarity).

accordance with a numerical evaluation [26] of the BCS
penetration depth assuming λ(0) = 150 nm, Tc = 90 K,
ξ0 = 2 nm, and ` = 10 nm. Figure 3 displays the re-
sults for [λ(0)/λ(t)]2 = fs(t)m∗(0)/m∗(t) for Einstein
spectra with Λ0 = 4 and Ψ = 0.3 (dotted curve) and
Ψ = 0.6 (dashed curve). The results for a constant ef-
fective mass (bold solid curve) and for the BCS predic-
tion (thin solid curve) are shown for comparison. With
increasing coupling strength, a shoulder occurs as a result
of the extremal behaviour of m∗(t). In accordance with
the definition of Ωln, the Einstein spectrum with Ψ = 0.3
agrees well with a Debye spectrum at TD = 460 K (dash-
dotted). The low-temperature variation of [λ(0)/λ(t)]2
reflects the quadratic dependence of m∗(t) which is sig-
nificantly steeper than the variation of fs(t) alone. This
conclusion remains valid even if the Gorter-Casimir tem-
perature dependence fs(t) = 1 − t4 was employed, which
is known to reproduce the strong-coupling behaviour of
conventional superconductors quite well. The inset to Fig-
ure 3 magnifies the effect of m∗(T ) on λ−2(t) close to Tc.
Strong electron-phonon coupling (e.g., Ψ = 0.6) can ob-
viously account for deviations from the Ginsburg-Landau
critical exponent n = 2 without needing to consider un-
conventional behaviour.

The relevance of the shape of the phonon spectrum for
the explanation of the experimental λ−2(t)-dependence is
demonstrated in Figure 4. Typical data for YBCO single-
crystals (Ref. [16], bold curve, [λ(0)/λ(t)]2 ≈ 1 − 3t/7−
4t6/7) are known to deviate from the BCS theory (thin
solid curve). In contrast, much better agreement is found
with our model under the assumption of an Einstein spec-
trum with Ψ = 0.68 (dashed curve). Even better agree-
ment can be achieved with a more realistic step spectrum

α2(Ω)F (Ω) =
Λ0

2 ln(Ωu/Ωl)
θ(Ω −Ωl)θ(Ωu −Ω) (11)
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Fig. 4. Temperature dependence of [λ(0)/λ(t)]2 for the Ein-
stein spectrum with Ψ = 0.68 (dashed curve) and the step
spectrum (dotted) according to equation (11), with the pa-
rameters given in the text. The bold curve represents the data
reported by Fink [15], the BCS prediction is indicated by the
thin solid curve.

using ~Ωl/kB = 60 K and ~Ωu/kB = 460 K (dotted
curve). According to the definition ofΩln by equation (9b),
this spectrum corresponds to Ψ = 0.54. It is noted that
any value of Ψ ≥ 0.2 can be obtained by adjusting Ωu

below ~Ωu/kB = 1 000 K, which is considered reasonable
for YBCO [5,15], and by replacing Ωln by [5]:

〈Ω〉 =
2
Λ0

∞∫
0

α2(Ω)F (Ω)dΩ.

4 Modeling the surface impedance of YBCO
films

The significance of the proposed two-fluid model can be
further illustrated by applying it to the analysis of the
experimental data of the temperature dependent surface
impedance, measured on a typical high-quality epitaxial
YBCO film at 87 GHz (“sample A” in Ref. [13]) by a
copper cavity technique. The surface impedance was sim-
ulated according to the local relation:

Zs(t) =

√
iµ0ω

σS(t)
(12)

with σS(t) given by equation (1). The temperature de-
pendence of the scattering rate and of the effective mass
were determined by equations (5, 8). In order to take into
account a finite residual resistance Rres, a small fraction
of inherently unpaired quasiparticles, ε, was assumed. The
previous assumption fn(t)+fs(t) = 1 was correspondingly
replaced by the more general approach fn(t)+fs(t)+ε = 1,
with 0 < ε� 1, yielding:

RS(T = 0) =
1
2
µ2

0ω
2λ3(0)

ε

ρr
· (13)
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(a)

(b)

Fig. 5. Effective data for [λeff(0)/λeff(t)]2 (a), λeff(t)/λeff(0)
(inset to Fig. 5a), and for Rs,eff(t) (b), measured at 87 GHz
with the epitaxial YBCO film referred to as “sample A” in
reference [13] (symbols). The lines represent the best fit of the
extended two-fluid model.

It should be noted that the existence of a finite frac-
tion ε > 0 of unpaired charge carriers is a common
phenomenon for conventional superconductors [2]. For
instance, the values of Rres = 10−1 nΩ measured at
f = 1.5 GHz for Nb samples with ρi(T = 300 K)/ρr = 100
correspond to ε ≈ 0.03 [27]. The relationship between λ(t)
and the pair fraction fs(t), and, hence, the results de-
scribed in the previous sections, remained unaffected by
setting ε > 0. In order to account for the finite film thick-
ness d, Rs and λ were replaced by their effective values [28]

Rs,eff(d) = Rs,∞

{
coth

[
d

λ(t)

]
+

d/λ(t)
sinh2[d/λ(t)]

}
(14a)

λeff(d) = λ∞ coth[d/λ(t)]. (14b)

The model parameters were fixed at d = 350 nm, Tc =
91.6 K (as obtained by inductive measurements), ρi(1) =
65 µΩcm (as deduced from Rs(T )-measurements above
Tc), λ(0) = 160 nm [13] and TD = 460 K [16]. The pair
fraction was approximated by fs(t) = 1 − t2.8 as before.
However similar agreement between model and Zs-data
was not limited to the weak-coupling expression for fs(t)

but applied similarly well to fs(t) = 1 − t4 expected for
strong coupling.

For simplicity, only an Einstein spectrum with Λ0 = 4
was assumed, leaving only parameter Ψ as the free one
to simulate λ(t), and ρr and ε as additional parameters
required to simulate Rs(t). However, the residual fraction
ε is fixed by Rres and ρr according to equation (13). The
measured Zs,eff(t)-data were fitted by least-squares pro-
cedure assuming errors of 0.1% and 10% for the λeff(t)-
and Rs,eff(t)-data respectively. The best fit to the pen-
etration depth, shown in Figure 5a, was achieved with
Ψ = 0.246± 0.003, which is consistent with the assumed
Debye temperature for a coupling strength Λ0 = 4. The
best fit to the Rs-data, shown in Figure 5b, was obtained
with ρr = 1.8±0.2 µΩcm and ε = 0.041±0.005. These val-
ues could be easily explained by granularity [29–31] or by
residual magnetic scattering [32]. In spite of the simplicity
of our model, the agreement between the measured sur-
face impedance data and theoretical results is surprisingly
good.

5 Discussion and conclusion

The surface impedance Zs(t) of a typical high-quality
YBCO film [13] at f = 87 GHz could be described with the
two-fluid model accounting for a temperature dependent
quasiparticle scattering time τ(t) and an effective mass
m∗(t), which are related to conventional strong coupling
electron-phonon interaction, and with fs(t) fixed in agree-
ment with the BCS approach. Such a procedure seems to
be justified because in the full Eliashberg formalism the
temperature dependence of the coupling strength mainly
affects the renormalization function (which is strictly re-
lated to m∗) rather than the gap function (which is strictly
related to fs) [5,33]. In general, a strong electron-phonon
interaction could be expected to affect also the tempera-
ture variation of fs. It is tempting to assume that a more
realistic form of fs(t) could be deduced from measure-
ments of the out-of-plane (c-axis) penetration depth λc.
In fact, charge transfer along the c-axis was considered to
be related to tunneling or impurity assisted hopping [34,
35] and thus to be independent of electron-phonon inter-
action. Therefore, the out-of-plane value of the effective
mass m∗c should be independent of temperature. Given
that the fraction of paired charge carriers fs,c still reflects
strong coupling, the expression fs,c(t) = [λc(0)/λc(T )]2
could be assumed as simplest approximation. The obser-
vation that, for t < 0.5, the penetration depth for c-axis
transport comes close to the BCS result [36] is a striking
support of our model assumption.

A strictly linear temperature dependence of the pen-
etration depth at t � 1 could not be obtained with a
simple Einstein spectrum (Fig. 3). However, as was firstly
pointed out by Eliashberg [33], it can be simulated with
more realistic phonon spectra having a finite density of
states at low frequencies [37] (see dotted line in Fig. 4
as a first step of this approximation). In such case, the
penetration depth can be definitely factorized by equa-
tion (4), with m∗(t) which controls the low-temperature
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behaviour of λ(t) [37]. The results obtained with the two-
fluid model and reported in reference [16] were concluded
to remain valid, in the adiabatic limit ωτ � 1, if the
quantities y(t) (y = fs, fn, τ) were modified by the for-
mula y∗(t) = y(t)m∗(0)/m∗(t). Furthermore, the subtle
differences of λ(t) between single-crystals and epitaxial
films, which could be reproduced with the same value of
Ψ , can be explained in terms of different phonon spectra,
which depend on the presence of the strain and the defects
which are present in typical films but absent in high-purity
single-crystals.

In conclusion, the temperature dependence of the ef-
fective quasiparticle mass, which can be neglected in clas-
sical superconductors due to the low transition temper-
ature and, hence, low ratio Tc/TD, was found to explain
many of the unconventional electronic properties of the
high-Tc/TD materials, including the observation of expo-
nential temperature dependence of Zs [2], which is incon-
sistent with a pure d-wave symmetry of the order param-
eter. The extended two-fluid model could also account for
the empirical power law-behaviour of the scattering time
τ(t) at low temperatures t � 1 without unconventional
pairing assumption. The parameters required to fit the
λ(T )-data measured at 87 GHz with a simple Einstein
spectrum and fs(t) = 1 − t2.8 where Λ0 = 4, Ψ = 0.25,
and λ(0) = 160 nm. Considering a Bloch-Grüneisen tem-
perature dependence of the quasiparticle scattering with
a Debye temperature TD = 460 K, which is consistent
with Ψ = 0.25, it was possible to describe the tempera-
ture dependent surface resistance, which demonstrates the
reasonable value of the residual resistivity ρ(0). The resid-
ual resistance Rres was attributed to a small fraction (few
percent) of quasiparticles that remained unpaired even at
the lowest temperatures. This conclusion is satisfied with
the Rres-values obtained for conventional superconductors
of the highest purity.
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